WWW.LIB.KNIGI-X.RU
    -
 

 >>  - .

̲Ͳ ² ʲ ֲ Ͳ .. Dz .. ( ...

̲Ͳ ²

ʲ ֲ Ͳ

.. Dz

..

( )

ϳ . ..

㳿 㳿

ᒺ 551.4+502(075.8) .. ( ). - .

. .. : ... - 2003. - 52.

㳿 . - - 㳿 .

ᒺ ( 150 ) . .



. , , .

- , ( - CD-JEP 21242-2000/Ukr)

- :

. .. (), .., .. (), . (ᒺ , ), . ( ., ), . ( , ).

.., 2003

   

- .., 2 24.10.2003 .

UDK 551.4+502(075.8) Velychko S. Energy of the environment of Ukraine (with electronic maps). Teaching and methodological manual for the MSc students.

Scientific editor: Prof. I.G. Chervanyov Kharkiv: Kharkiv Karazin National University. - 2003. - 52 pages.

The manual describes natural environment energy sources. Original computer maps models of spatial-temporal distribution of renewable energy sources are proposed and way of complex usage of multiple kinds of renewable energy for improving of the energy supply in Ukraine conditions is shown.

Color maps and diagrams (more than 150 items in total) are represented on the CD. They have to be used in the interactive educational process.

The manual is assigned to magistrants specialized in Management of regional development of renewable power engineering and Environmental energetics. It may be used in the distance learning systems, improving of qualification and by local authorities in assessment of renewable energy resources and regional planning.

Editorial team of the series of teaching and methodological manuals:

Prof. I.Chervanyov (team leader), Prof. V.Bokov, Prof. O.Kuzin (Ukraine), Dr. J. Klemes (UMIST, United Kingdom), Prof.

S.Monchaud (INSA-Rennes, France), Prof. L. Puigjaner (UPC, Spain).

   

³ ³ , ղ 12% 㳿 . , , , 25 . . , , .

 , , , , 㳿, . , , , , . , . ³ , . .

, , , , -, - , -, ; , -, , .

- . . , , 㳿, .

- , ( ), , . , 㳿 , ᒺ . .

( ) 㳿 . , , 㳿 񳺿 . , .

, 㳿 ( ), , , . , , . , , , , . .

- .. .

.

. .., , - 㳿 , . - , .





- 򳺿 , - . .

, , . - , . , , , , 㳿, . , , . , , .

- , ( ) . , , , CD , , .

, 3 . - ( ), . .

- , , , .

- CD_JEP 21242-2000/Ukr, 㳿 ( ), , , - , .

, .

IJ 1

   

1.1.1. 㳿: , , , , ; , .

1) :

) : (), . .

: , , ; , , . 1. 䳺 .

. /Solar collector with thermal trap

) : , , . : , , ; , , , ; .

.2. /Solar spiral collector/

) : -, . , , : ( ), ; , , .

2) . , : - ' n- ' . , p-n , . , , .

1.1.2. ³ ³ , , .

() , , . ³ , , . ³, , 2 : .

: ; , ' ; , ; , ; , ' ; ; ;

; .

) ) .3. () () /Wind power installations with horizontal () and vertical () axe/ , 2,4,6 , . 1 2- 10%, 2 3- - 5%.

, . , , 㳿 . - , , , . - , . ' , , .

. . , . - . , .

1.1.3. ó ó () , , , , , , .

. 4. () () . /Principal scheme of dam () and derivation() hydro power station/ . ó, 䒺 , . , 㳿, . 㳿 .

䳿 . , . , 㳿 , , . г , . , , .

:

1. 㳿 ?

2. .

3. 䳿 .

4. 䳿 ?

5. ?

6. ?

7. ?

8. ?

9. 䳿 ?

   

1.2.1. , :

S = D + I sin, S , D , I , - 1.

. . , 8 , , 2 .

: , , .

. 5. . /Intensity of daily summarized solar radiation in Kyiv/.

- . / . . . ... .: , 1981.- 216.

. 6. (/2 ) / Daily insolation on the upper border of the atmosphere (MJ/m2) as a function of the latitude and season/.

1.2.2. ³ ; , , . ʳ 㳿 12 v, /, t, , , : m, v, ():

mv 2 E= m ᒺ 12; v , /.

, 760.

00 :

v3 E= */2 15,2 ³ , , ( ), . , . . , ( ϳ ), , , , .

, .

, , ( ) . ֳ , , , .

: Vmin , ; Vmin-Vmax ; Vmax , .

, () - :

Vy A = C Vi 3ti + VV3Vy t, *3, V min =0,000481D2e, D - ;

e 㳿 ( 0,3) Vy

1.2.3. ó

:

Q + QK N = 9,81 H H,, Q QK , H 㳿 . 㳿 . 12. -, 12 1 .

:

*/2/ = 85,9 // 2, , 4.

:

.., .. - .: . 1967, 132.

.. . .:

- 1957, - 88.

4 .. 2. . .: 1967-600.

   

:

1. ?

2. ³ ?

3. ³ ?

4. ?

5. ?

6. ?

7. , , ? , - .

:

1. . :

549,41*/2, 571,52*/2.

2. 3,5; 4,1; 4,9 /.

3. . :

4/, 8/, 4/ 30%, 6-7/ 14%, 8/ 7%, 10.

4. ѳ : 453/ 513/, 16.

1.3 ᒺ

1.3.1. () ᒺ, . .

㳿:

, ; , .

ᒺ .

. 0,001 0,006 / 0,003-0,004 /, , , 5. , (, , ),. 48 . . , 20 . 6. (³, ). , .

. 7. / Solar power station with solar pond/

, , . , . , , ; , , .. 㳿: ϳ. . . .: 1993-352.

.., .. . . 1991 .

, . . , , .

, , , , , , . , , - . 㳿 , 2. , .

. , , . ϳ , 쳺 볺 ' , 쳺 , ' .

1.3.2. ³ . ϳ 5 15 /2 . 1000 70-200 2. , , .

. , , () 2%. ³ . , 400-800 , .

. , , .

. ( , , ) . , , ( 16) ( 20 )7. : ; ; 䳺 .

³ . , . ( - ).

, . , , ( 100-150 ) 50% 㳿.

:

, . 䳿 100-150 . , , .

.., .. . . 1991 .

, , , . . , , ( , , ).

1.3.3. ó , , , 7.

. ( , ), ( , ). , .

:

;

ò-, , - ( , (.. .., .. .)

㳿 .

, , , , , -. . г - . , ᒺ .

. , , .

( ): , ; , ; , , , - ; , , ; . ( ), 8.

, : , ᒺ , , ᒺ; , , ; , ( ), , ; ; ; .

. .. . ( ): . : . . . -, 1996.-70.

1.3.4. ᒺ (, , , , ) . .

, , , , ᒺ, . , .

( ) :

- , , ,

- ;

- 㳿;

- ;

- ;

- ' 9.

, ᒺ :

. :

- , , ;

- , ᒺ ᒺ , ;

- 㳿;

- ( ) ;

- 㳿 ;

- , , , , - ( );

. :

- , ;

- 㳿 ( 㳿 1,6*10-4 /2, 5/ 7,6*10-5 /2 10), ᒺ ,

- ;

- ( ), ;

- (, ).

.: . .: 1999.

.., ϳ .. : , ? ( ).-.: , 1999- 185.

㳿 .

, ᒺ :

- ;

- ;

- () ();

- 㳿 ;

- ;

- , ' .

, .

   

1. ?

2. ?

3. ?

4. , , ᒺ?

5. ?

   

, : ᒺ .

   

, - , .

2.1.1. , 12 , : 1070 */2 1400 */2 11.

㳿 ( ), , 㳿 , . . . - 7 ( ), 5 ( ). .

. . ³ , , , : ( ), - , , (, , ).

. - . (. 6) . , , .

, .

. : 60% , . 3%. .

̳ .

㳿 , : 3 8%. 15 30%, , , .

. XXI . : , 2001-400.

8. (, ) /Solar energy resources of Ukraine (January, April)/ 9. (, ) /Solar energy resources of Ukraine (July, October)/ . , , , . , . .

, , : 0,743-0,754 0,759-0,797 ' . , , . , . 1015% .

. . , . , ( , ), , , , . , , 䳺 . , . ( ).

. 12 , () .

2.1.2.³

㳿: 30 . 13.

1519% ' 㳿 , . 㳿 12 8001000 /2 .

, , . , . .

. 䳺, . 10151025 . ( 1022 ) - ó - (- . .1978-186.

㳿 . -2001 , )14.

( - ) ( 1022 ).

( 1020) ó . ( ) г . . , , . ( 1013 ) ó , .

̳ ( 1011) , 1012 . , 1012. , 䳺 .

. , , , . , , . : , 10%, , 20%.

( 1013% ), .

, 5 /. ˳ , г , , - . ⳿.

.., .. - .: . 1967 132.

. 10. ³ (, ). /Wind energy resources of Ukraine (January, April)/ . 11. ³ (, ). /Wind energy resources of Ukraine (July, October)/ 4 5 /, - , , ϳ ' .

, 16 4 /, 5 /. 3 / 16 .

5 / , ( ). 4 5 /. 4 / - , . , - ϳ 16 3 / (: 3,5 /, 2,8 /).

(- , , ) 34 /.

. () . , ' - .

. , . . , , , . , .

5 / 16 . , 100 ( 6,1 /; 5,1; - 6,3; 6,4; 6,0; - 7,9; 5,0 /)[10].

34 /. 4 /. .11 , 5 / - . . ˳ , - , ³ - 16 45 /.

̳ . 䳺 , , . , (1997). ̳ , . , , .

ֳ . 34 / , , - ' .

, 16 3 /, - ϳ ( ), 2,4 /.

( 5 /) , . 45 /, 34 /. 34 /. 5 /. , - , 45 /.

(6 /) - . - ( ) (45 /).

, 34 /.

2.1.3. ó

ϳ , 㳿 , , .

㳿 , , :

- ;

- ,

- .

, .

. , 2000-50000 2, , 2000 2.

. , (, , - ) 71,7% , (³, , , ʳ, , ) 14,2%. 㳿 .

㳿 . ѳ , 3,6% 㳿 . (, ) 4,5%, 5,7% 㳿 , 1% .

. , , ϳ 82% , , ', 90% 㳿.

. 5 , . , . 񳺿 .

̳ . , , .

.

, , . , 䳺 , .

, . , ( ) . - , , .

, , 㳿, , , , , - .

. 12. ó (, ). /Hydro energy resources of small and medium-size rivers of Ukraine (January, April)/ . 13. ó (, ). /Hydro energy resources of small and medium-size rivers of Ukraine (July, October)/ , , . , 䳺 , .

, . , ( ) . - , , .

, , 㳿, , , , , - .

:

1. ., .

2. .

3. ( ).

4. 㳿 .

5. , .

6. .

7. .

8. 㳿 .

9. - .

10. - .

11.

12. , .

13. .

14. .

15. 㳿 .

16. - .

17. .

18. , .

   

2.2.1. . :

- , - ᒺ - , ;

- ; , , , ;

- , , , , , ;

- , .

. , - .

:

, . . ( 500 ). .

xij x j 1n 1n x j = xij ( xij x j ) 2, j = Xij = j n i =1 n s =1 ij ; x j - ; Xij- ; j - .

: . (. 14, 15)

:

1. .

2. , .

3. .

4. ( ).

5. , 㳿 .

. 14. (, ). /Integral assessment of solar and wind energy potential of Ukraine (January, April)/ . 15. (, ). /Integral assessment of solar and wind energy potential of Ukraine (July, October)/ 2.2.2. , . - : 2-3 , 2-3 . . .

, 㳿 , , . , , 㳿 .

.

, , : , ; , , . , 0,5/1 0,3/1 , . 㳿, . 0,3/1 ' , , 㳿 . 1/1 , .

, 㳿 , , , . , 㳿 ( , ).

:

1. , .

2. , .

.

.16. ( ).

/Dynamics of summarized solar potential in the cities of Ukraine (in relative indicators)/

. 16:

1. ? ?

2. ?

3. ? ?

. 17. ( ).

/Dynamics of summarized wind potential in the cities of Ukraine (in relative indicators)/

. 17:

1. ? ?

2. ? ?

3. ? , .

.18. - ( ). /Dynamics of summarised solar and wind potential in the cities of Ukraine (in relative indicators)/

. 18:

1. - ?

2. ?

3. ?

.19. - ( 0,25/1). /Dynamics of summarised solar and wind potential in the cities of Ukraine in relative indicators (relation 0.25/1)/ . 19.

. 19:

1. ?

.

2. , ?

3. ? ?

2.2.3. , , 2.2.1, , .

:

3. , .

4. .

5. ( ).

6. 㳿 .

7. - ( 2.2.2.)

8. , .

9. - -- .

10. .

. 20. , (, ) /Integral assessment of solar, wind and hydro energy potential of Ukraine (January, April)/ . 21. , (, ) /Integral assessment of solar, wind and hydro energy potential of Ukraine (July, Octoder)/ .22. ( ). /Dynamics of hydro energy potential in the cities of Ukraine (in relative indicators)/

. 22:

1. ? ?

...

2. ? ?

3. -?

.23. -- . /Dynamics of summarised solar-wind-hydro energy potential in the cities of Ukraine (in relative indicators)/

. 23:

1. ? ?

2. ?

3. , -? ?

.24. -- ( 1/1/0,5). /Dynamics of summarised solar-wind-hydro energy potential in the cities of Ukraine in relative indicators (relation 1/1/0.5)/

. 24:

1. ? ?

2. ?

3. ? ?

   

2.3.1. :

- 㳿 750 */;

- , ;

- , .

, , , , , .

:

- ;

- ;

- ;

- - .

. , . . - (). , .

(100-300 ), 㳿, , - .

, .

:

- ;

- ", " " ;

- 㳿 ;

- ;

- , - +-.

: ( ) , ( , ).

2.3.2. ³

, , . , 10, 5-6/.

³ 6 , 20-30 , . , 50-100 , - 300-600 .

600 2500 , ( 100) 4-5/ , 70-80% . ³ 㳿, ( 1,5-2 ) . .

, (0,4 11) , 䒺 , , 㳿 .

, . 㳿 㳿. . , , , , , , -, .

15-20, , , . "ѳ " 㳿 , , .

2.3.3.

( ), () 1000 30000 , 100 1000 , 100 .

ó . 22 . 200 . , 30 . *. , , 㳿.

260 10-100 . 3, 500 2000 5-10 . , , , , , . , 糿 . ', , , . , . , "" .

1952 . 6640 , . 1985  , , , 155 , 49 83 .

, 1985 .: 2000 . 14 55 165 . . (, -ѳ, , ) , , . ҳ 25 500 ( 5-15 ) 50% .

$600-700, $350-400. 2010 . 1000 4 . * 㳿15. 25% 㳿 ( ).

:

1. ?

2. ?

3. ?

4. ?

.., ϳ .. : , ? ( ).-.: , 1999- 185.

ϳ .

.

1. 㳿 ( ;

; ; ; ) .

2. 㳿 ( , , ).

3. (, ) 㳿.

4. 㳿 ( , , ) .

5. 㳿 ( , , ) .

6. (, ) - -.

7. (, ).

8. ³ (, ).

9. - (, ).

10. 㳿 ( , , - , ).

ϳ .

, 1-10, .

:

1. 㳿 . . .1978. - 186..

3. .., .. . .

1991 - 342.

4. .., .. - .: . 1967 132.

5. .., .. .: 1988- 58.

6. .. 㳿: ϳ. . . .: 1993-351.

7. .., .. ó . . - 1959 196.

8. .., ϳ .. : , ? ( ).-.: , 1999- 185.

:

1. .. - . ., - , 1985 .

2. .. .. 㳿 / 7/99 33-41

3. .. 㳿, White Paper?/ 2/2001- 4-5.

4. .. .. . . :

5. .. . . ѳ: , 2000. 544.

6. .. - .:

1954 64.

7. . /Deutschland 5/2000

Resume.

Teaching and methodological manual consists of two main parts. First part characterizes renewable energy sources of the modern power engineering: solar, wind and hydro energy. It has three modules. Module

1.1 describes basic technologies of the usage of energy of the environment. In the field of solar energy usage solar collectors with thermal trap, solar spiral collectors and photovoltaic cells are regarded. There are presented construction of wind power installations both with horizontal and vertical axe. In terms of hydraulic power energy principal schemes of dam hydro power stations and derivation hydro power stations and their description are given in the first module.

Module 1.2 is dedicated to different methods of renewable energy potentials assessment for three types of renewable energy.

Solar potential depends mainly on summary solar radiation, which, in its turn, depends on geographical factors - such as geographical latitude, daytime, cloudiness, features of the land surface. Wind potential is defined by the wind speed and air density. Wind potential of the territory is determined by global geographical factors (location of the country within the global atmosphere circulation; for Ukraine: prevailing of western winds and anticyclones), regional factors (dependence on geographical zone and closeness to seas), local factors (dependence on landscape forms). Hydro energy potential is defined by water discharges in a river and level difference of falling water.

From geographical position it depends on hydraulicity of a region and water drain that defines hydro energy potential of territory. Main geographical factors that define hydro potential are annual precipitation, its dynamics and relief of the region. There are represented general mathematics methods of energy potential assessment and tasks are given with actual values of natural indicators that allows make assessment of the annual solar, wind and hydro potential of the certain territory in the second module of the first part of the manual.

Module 1.3 describes environmental impacts caused by renewable energy installations.

Solar power engineering causes following impacts: occupation of land sites and their degradation; significant construction material demands; possibility of outflow of working liquid, that contains chlorates and nitrates; danger of overheating and fire accidents of systems, infection of food products by toxic substances in case of solar systems usage in agriculture; changes of thermal balance, humidity, wind direction in the place of stations allocation. Wind power engineering impacts on the environment in the following directions: noise impact, electric, radio, television disturbations; land occupation; local climate changes; hazards for migrating birds; visual impact;

impact on sea animals and sea transportation - in case of offshore wind farms. Hydro power engineering cause following impacts: overflooding of lands; river banks changes, soil erosion; changes in hydrological, hydrothermal, hydro chemical and hydro biological regimes; climate and landscapes changes; changes of land and water flora and fauna; tectonic changes (increasing of seismic activity). There is also described authors idea of usage of renewable energy sources in territories with difficult environmental situations where significant and poorly compensated changes of landscapes, fast increase of threat of exhaustion or losses of natural resources, unique natural objects, worsening of residing conditions of population are typical. In result of reduction or termination of impact the normalization of environmental conditions and regeneration of landscapes takes place. In Ukraine territory in the majority of cases (except Chernobyl zone) the difficult environmental situations inherent to the territories with high concentration of industrial activity and neighbour regions. They are characterized by the following features: increased levels of chemical pollution of atmospheric air, natural waters, soils; significant amount of wastes; high specific density of energy production;

occupation of lands; continuous character of environmental impact; negative influence on public health.

On the other hand, main features of environmental impact of renewable power engineering are following: absence of chemical pollution of atmospheric air, natural waters, soils; serious physical impact (noise, electromagnetic pollution etc.); significant land demand of renewable energy sources; absence of wastes; large territorial and time non-uniformity of operation that makes environmental impact more discrete;

low specific density of energy. Besides, renewable energy installations are characterized by possibility of the automated control systems usage and are able to operate without human participation. Thus, in a case of allocation of renewable energy installations in territories with difficult environmental situations, we obtain a territory characterized by the following features: reduction of chemical pollution; reduction of wastes due to ecosystems self-regeneration; replacement of continual (constant) environmental impacts by discrete (temporal) ones; decrease of specific density of energy production in the area; complex usage of land; use of the computer control systems, reduction of influence on human health. Thus, using the territories with difficult environmental situations for development of renewable power, we can acquire an improvement of environmental state of territory without the termination of its economic activities.

Second part of the manual is dedicated to renewable energy sources of Ukraine. Module 2.1 gives description of solar, wind and hydro energy resources of the country. For example, for solar energy resources it is given description of regularities of geographical distribution of total radiation and it components on observed territory. These links are most simple in the conditions of clear sky, when solar radiation distribution is defined by astronomical factors and transparency of atmosphere. Dependence of summary radiation values per day and month on geographical latitude is to be seen during whole year. Most evident it is in winter: in January on South of Ukraine total radiation is 60% higher than on the North of the country. In July, such difference is less than 3%.

Total radiation dependence from latitude is explained mainly by the same dependence in monthly values of direct radiation. Monthly values of indirect radiation are almost independent from latitude. Corresponding maps of solar, wind and hydro potential during the year are presented. General descriptions of them are given with identification of key factors that cause such geographical distribution of three kinds of renewable energy potentials. But more specific analysis of these maps as it is indicated in the corresponding tasks has to be done by the students.

Module 2.2 provides summarized assessment in relative indicators of natural resources for development of renewable power engineering in Ukraine.

The assessment is based upon two initial statements. The first one is that natural resources for every kind of renewable energy present all over Ukraine and varies continually, i.e. any site can be used for installation of solar, wind and hydro energy units. Threshold characteristics of natural resources for every kind of renewable energy sources within which renewable energy sources can be used for energy production are unstable and depend on certain technology and technical parameters of installations.

The second initial statement is that efficiency of renewable energy units is directly defined by characteristics of corresponding natural resource. Thus, comparative assessment of natural resources of different regions that is presented in the manual shows potential efficiency of usage of corresponding territories for the needs of renewable power engineering. Maps of the integral assessment of annual solar and wind energy potential of Ukraine are presented as well as the methods of their development. For more detailed study of the annual dynamics of the summarized potential of solar and wind resources are shown diagrams of solar, wind and summarized potential dynamics by which dynamics. Corresponding tasks for the students are given. Solar and wind dynamics are in general opposite each other in Ukraine: maximums of solar potential are observed in the summer months, wind potential maximums are usual for the winter period. Thus, combining two renewable energy sources we can change their summarized dynamics in the necessary way.

By increasing of share of solar energy we can raise energy production during the summer period as it is needed for resort territories of the Ukrainian South. Higher percentage of wind generators can provide additional power capacity for the winter period. Such various ways of shares distribution between solar and wind power production capacities are shown with the help of appropriate diagrams and tasks for their analysis are given.

The same assessment and appropriate maps, diagrams and tasks are given for the analysis of summarized solar, wind and hydro energy potential of Ukraine.

Module 2.3 describes background and perspectives of renewable power engineering in Ukraine during further decades. Natural, social, economic preconditions of solar, wind and power engineering are described.

 >>  - .


:

- : 2 budfinsoft.ru 2013 1. . 3 1.1. ...

" " : . ., ...

04 2014 N 20 , , 16 2010 N 52 . 44 , ...

. . 811.521(07) + 371.26(07) + 371.315 ...

(2 ). , _ 1. 12 2. ...

/ U 1 1912 . . . òͲ 1912 . I ...

\ql 26.12.2013 N ( 09.07.2014 N 33026) www.consultant.ru : 19.10.2014 ...

SL-P-00 . . . ...

( ) V 1. . : , . .2. ...

422570, , . . 18 422570, , ., 18 .: (8843-79) 2-12-67, : (8843-79)...

- 1 2 3 4 5 6 7 ...

2 . . , SKAZKOTERAPIYA AS TECHNOLOGY SOCIAL WORK Ermolova A.Yu. Branch of the Southern Federal University Novoshakhtinsk, Russia ..3 1 .6 ...

586_302023 5355/11 18 2011 . : ...

- 13 2013 . 288 . - 1 2013 ...

. 2014. 2. . 112123. 81276.1+659.1 .. , : * . "...

. , . -27/3,5 ...

519.245 . . 1. . 3 (61). 2016. . 4 - . . 1, . . 2 1 - , , 199034, -, ...

"-" 1. . ...

1935-1940 , . : G. Homjakow, 225 West 71 Street New York, N. Y. 10023. Printer: I. Baschkirzew Buchdruckerei, 8 Mnchen 50, Peter-Mller-Str. 43. Printed in Germany ...

, : , ! . . , , . ,...








 
<<     |    
2017 www.lib.knigi-x.ru - -

, .
, , , , 1-2 .