WWW.LIB.KNIGI-X.RU
БЕСПЛАТНАЯ  ИНТЕРНЕТ  БИБЛИОТЕКА - Электронные матриалы
 

«ВВЕДЕНИЕ 3 1 Общая задача оптимизации 5 1.1 Классификация задач оптимизации 5 1.2 Постановка задач оптимизации 8 2 Линейное программирование 11 2.1 ...»

Курсовая работа «Классические методы нахождения экстремума. Безусловный

экстремум функций многих переменных. Решение с помощью пакета

Mathcad.»

Басова А.А.

Донской Государственный Технический Университет (ДГТУ)

Ростов-на-Дону, Россия

Course work " Сlassical methods of finding extremums. Unconditional function`s of

different variables. Solution with the help of programme Mathcad.»

Basova A.A.

Don State Technical University (DSTU) Rostov-on-Don, Russia

СОДЕРЖАНИЕ ВВЕДЕНИЕ 3 1 Общая задача оптимизации 5

1.1 Классификация задач оптимизации 5

1.2 Постановка задач оптимизации 8 2 Линейное программирование 11

2.1 Графический метод решения задач линейного программирования 12

2.2 Задача линейного программирования 15 3 Классические методы нахождения экстремума 21

3.1 Условия существования экстремума 21

3.2 Наибольшее и наименьшее значение функции на отрезке 25

3.3 Безусловный экстремум функции многих переменных 27

3.4 Условный экстремум 33

3.5 Наибольшее и наименьшее значения функции двух переменных в замкнутой области ЗАКЛЮЧЕНИЕ 40

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ 41

ВВЕДЕНИЕ В самом обширном смысле под оптимизацией понимается поиск наилучшего решения из числа данных. Определение «оптимальный» чаще всего понимают как благоприятный, максимальный (минимальный), наиболее результативный и др.

Каждый из нас ежедневно, решает вопрос: как достичь наилучшего результата, обладая ограниченными ресурсами. В современном мире образовались математические модели, с помощью которых описывают различные ситуации на языке математики. Единым для всех моделей являлось то, что в них поиск наилучших вариантов сводился к поиску экстремального значения функции.



Данные модели стали назваться экстремальными задачами, а функции – оптимизируемые.

Известный ученый И. Бернулли дал основание исследованию экстремальных задач – вариационному исчислению. В вариационном исчислении исследуется отбор экстремумов функционалов, установленных на множестве непрерывных функций. Главный труд в решение задач на условный экстремум, привнес известный ученый Ж. Лагранж. Его принцип популярен и в наше время, как в практических, так и в теоретических исследованиях. Сформулированы универсальные способы решения задач линейного программирования [3].

Изучение математических моделей оптимизации производится в разной вариации. Использование этих методов в первую обуславливается от вида самой модели, ее размерности и т.д. Математическая модель – это совокупность соотношений описывающих данную задачу, ее ограничения, целевую функцию.

На практике применяют разные способы решения экстремальных задач.

Основные способы анализа моделей оптимизации: численное моделирование, аналитический способ, методы случайного поиска.

Аналитический метод, предоставляет наглядную картину процесса и его характеристик. Создание модели – сложная задача. Цель исследователя заключается в том, чтобы в ходе выстраивания математической модели можно было ее исследовать аналитическими методами. Изучение при помощи численных методов и ЭВМ менее наглядно. По сравнению с аналитическими, класс моделей, подходящих для анализа численными методами, существеннее обширней. Итоги изучений очень громоздкие в сравнении с аналитическими методами нуждаются большой вычислительной деятельности. В связи с внедрением компьютеров и современного программного обеспечения данный способ находит все большее использование. Из числа численных методов широкое использование приобрели методы дихотомии, золотого сечения, Фибоначчи, методы покоординатного спуска и т.д. Анализ при помощи методов случайного поиска подразумевает моделирование различных явлений без изменения их логической структуры и расположения во времени с применением случайных процессов и величин.

Рассмотрено решение некоторых оптимизационных задач, в том числе и задач линейного программирования, в средах математического пакета Mathсad. А так же табличный процессор Excel имеющий развитые средства, позволяющие решать разнообразные задачи оптимизации, с помощью встроенной функции: поиск решения.

–  –  –

С учетом типа целевой функции и соотношения ограничений выделяют различные задачи оптимизации.

1. По типу параметров задачи оптимизации. Выделяют непрерывные задачи оптимизации дискретные и целочисленные.

2. По условию размерности допустимого множества параметров D. Задачи оптимизации по этому условию делятся на задачи одномерной и многомерной оптимизации.

3. По условию наличия или отсутствия ограничений на вероятное множество D. Различают задачи условной и безусловной оптимизации. Данный показатель классификации может относиться, как к одномерным, так и к многомерным задачам оптимизации.

4. По характеру ограничений. Различают детерминированную оптимизацию и стохастическую. Если множество допустимых значений включает случайные компоненты, то имеет место стохастическое программирование. При этом стохастическая оптимизация можно отнести и к дискретной задаче.

5. По виду целевой функции и виду ограничений. Выделяют линейное и нелинейное программирование. Задача одномерной безусловной оптимизации.

–  –  –

Задача линейного программирования ( )=, = 1,, 0.

Целевая функция – линейна, ограничения тоже линейны. Наиболее известные классические задачи линейного программирования: транспортная задача, задача о диете и другие.

Задача целочисленного программирования.

В задачах целочисленного программирования компоненты вектора {x} принимают только целые значения. В зависимости от ограничений и вида целевой функции различают задачи оптимизации, классификация которых показана на рисунке 1.

Рисунок 1 – Классификация задач оптимизации Задачи нелинейного программирования подразделяются так, как показано на рисунке 2.

–  –  –

Чтобы решить оптимизационную задачу необходимо найти наилучшее решение среди возможных вариантов. Объекты оптимизации – различные устройства, процессы и ситуации, согласно к которым необходимо решить задачу оптимизации. Методы оптимизации занимаются построением оптимальных решений для математических моделей, при этом сам вид модели определяется методом, используемым для построения оптимального решения. Для решения любой задачи достаточно представить объект оптимизации в виде математической модели. Математическая модель – модель, которая определена с поддержкой математических формализмов, сама модель не является точной, а является идеализацией.

Для постановки задач оптимизации необходимо учитывать заданную последовательность:

Первый пункт – установление границ. Система это отдельная часть внешнего мира. Параметры системы задают пределы, которые ограничивают ее от внешнего мира. При этом подразумевается, что взаимосвязи с внешним миром закреплены.

С целью получения адекватного решения необходимо дополнить в систему дополнительные подсистемы, однако это приведет к росту размерности задачи.

Необходимо стремиться к представлению системы в виде отдельных подсистем.

Второй пункт – подбор количественного условия. Он дает возможность выявить лучший вариант, называемый характеристическим условием. Условия бывают технологического или экономического характера. Условие, установленное в качестве характеристического, должно принимать максимальное (или минимальное) значение для самого лучшего варианта. Условий может быть любое количество, тогда задача становится многокритериальной. Для приведения многокритериальных задач к однокритериальной достаточно одного из условий выбрать как первичным, а остальные оставить вторичными. Изначальное условие используется как характеристическое, а вторичные формируют ограничения задачи.

Третий пункт – определение внутрисистемных переменных. Через них проявляется характеристическое условие. Подбор переменных происходит с учетом рекомендаций. Следует разбить переменные, которые меняются на большом интервале и переменные, которые статичны или изменяется слабо.

Первые – это независимые переменные, а вторые – параметры задачи. Параметры задачи разделяют на фиксированные, которые испытывают случайное отклонение под воздействием вешней среды. Необходимо выбрать только те переменные, которые оказывают наибольшее воздействие на характеристический критерий.





Четвертый пункт – создание модели. Модель будет описываться как взаимосвязь внутри системных переменных, а сама модель системы представляет связь между переменными и отображает степень воздействия этих переменных на характеристическое условие. В модель входят главные уравнения материальных и энергетических балансов; уравнения, описывающие физически значений переменных.

Характеристики оптимизации – это изменение при оптимизации величины, входящие в математическую модель объекта оптимизации, а сами соотношения, устанавливающие пределы возможного изменения этих параметров – ограничениями, ограничения задаются в форме равенств или неравенств [1].

Несмотря на разнообразные постановки задачи, структура оптимизационной задачи однотипна и включает следующие компоненты:

1. Целевая функция ( ) – мерного векторного аргумента =(, ), т.е. ( ), ( ),…,.

( ) 0.

2. Ограничения в виде неравенств

3. Ограничения в виде равенств ( ) = 0.

.

4. Область допустимых значений Задача оптимизации в общем виде: ( ) ;

Ограничения первого рода ( ) = 0, = 1, ;

( ) 0, = 1, ;

Ограничения второго рода.

–  –  –

Линейное программирование – это раздел прикладной математики, посвященный способам нахождения наибольших или наименьших значений линейной функции многих переменных, т.е.

функций вида:

= + +... +

–  –  –

+ +... + = или линейных неравенств вида:

+ +... +

–  –  –

+ +... +,,, ( = 1,2, …, ; = 1,2, …, ) – действительные числа.

где Обычно в задачах линейного программирования на переменные налагаются 0 ( = 1,2, …, ).

еще условия не отрицательности:

Линейная функция z называется целевой функцией или функцией цели, а дополнительное условие называются ограничениями.

Построение математической модели задачи выполняются в следующем порядке:

, ( = 1,2, …, ) т.е. такие

1. Вводятся переменные величины задачи, величины, заданием числовых значений которых однозначно определяется один из вариантов исследуемого процесса.

2. Основываясь на условия задачи, выводятся ограничения, которым должны соответствовать введенные значения, при этом нужно учитывать, чтобы каждое условие было учтено.

3. Создается целевая функция, то есть линейная функция переменных задачи, которая в математической форме выражает условие выбора оптимального варианта.

Переменные величины задачи задаются не единственным способом. От их выбора зачастую зависит сложность математической модели, вследствие этого и удобство ее анализа. В элементарных задачах, подбор переменных вытекает из условий задачи.

1.2 Графический метод решения задачи линейного программирования Графическим методом можно решать задачу с двумя переменными с ограничениями в виде неравенств. Пусть требуется решить задачу = + (2.1) + + (2.2) ……… + 0, 0. (2.3)

–  –  –

Рисунок 3 0, 0 определяют соответственно правую и верхнюю Неравенство полуплоскости.

Область допустимых решений образуется целым рядом точек пересечения полуплоскостей, которые представлены на рисунке 4. Любая точка данного многоугольника будет являться решением системы ограничений или планом задачи линейного программирования. Область допустимых решений может быть как ограниченной областью, так и неограниченной или даже выражаться прямой, либо точкой [10].

Рисунок 4 В случае если система ограничений несовместима, то область допустимых значений пустая, отсюда, при пересечении полуплоскостей, не образуется общей, для всей области. Любое решение графической задачи начинают с построения многоугольника решений, который представлен на рисунке 5. После того, как многоугольник построен – находится такая его точка (, ), которая дает целевую функцию z, достигающую максимума.

–  –  –

z в области допустимых решений.

Оптимальным планом называется точка (, ). Это и есть результат решения задачи линейного программирования. Главная прямая всегда проходит хотя бы через одну угловую точку решений многоугольника, отсюда, оптимальному плану будет удовлетворять угловая точка. Линия уровня, которая подходит оптимальному плану, иногда совпадает со стороной многоугольника решений. В таком случае оптимальное решение не уникально – здесь имеет место альтернативный оптимум.

2.2 Задача линейного программирования

Предприятие химической промышленности выпускает соляную и серную кислоту. Выпуск одной тонны соляной кислоты – 25 денежных единиц выпуск одной тонны серной кислоты – 40 денежных единиц. Для выполнения государственного заказа необходимо выпустить не менее 200 т соляной и не менее 100 т серной кислоты.

Кроме того, необходимо учитывать, что выпуск кислот связан с образованием опасных отходов. При выпуске одной тонны соляной кислоты образуется 0,5 т опасных отходов, при выпуске одной тонны серной кислоты – 1,2 т опасных отходов. Общее количество опасных отходов не должно превышать 600 т, так как превышение этого ограничения приведет к выплате предприятием крупного штрафа. Требуется определить, сколько соляной и серной кислоты должно выпустить предприятие, чтобы получить максимальную прибыль.

1. Составим математическую модель задачи. Для этого введем переменные.

Обозначим через - количество выпускаемой соляной кислоты, через – количество серной кислоты.

2. В данной задаче требуется определить производство кислот, при котором доход будет максимальным. Доход от выпуска одной тонны соляной кислоты составляет 25 денежных единиц. Следовательно, доход от выпуска соляной кислоты составит 25 денежных единиц. Доход от выпуска серной кислоты составит 40 денежных единиц. Таким образом, общая прибыль от выпуска кислот составит 25 + 40 денежных единиц. Необходимо найти такие и значения переменных, при которых эта величина будет максимальной.

Таким образом, целевая функция для данной задачи будет иметь следующий вид:

(, ) = 25 + 40

3. Составим ограничения, связанные с необходимостью выполнения государственного заказа.

А. Предприятию необходимо выпустить не менее 200 тонн соляной кислоты и 100 тонн серной кислоты.

Это ограничение можно записать следующим образом:

200, 100.

Б. Переменные по своему физическому смыслу не могут принимать отрицательных значений, так как они обозначают количество выпускаемых кислот.

Поэтому необходимо учитывать ограничения не отрицательности:

0, 0.

В. Составим ограничение на небезопасные отходы. При выпуске одной тонны соляной кислоты образуется 0,5 тонн опасных отходов; значит, общее количество опасных отходов при выпуске соляной кислоты составит 0,5 тонн.

При выпуске серной кислоты образуется 1,2 тонн опасных отходов.

Таким образом, общее количество опасных отходов будет иметь вид:

0,5 + 1,2 600.

Таким образом, целевая функция и ограничения образуют математическую модель рассматриваемой задачи.

На рисунках представлено аналитическое и графическое решение задачи линейного программирования. Оптимизационные задачи решаются в Mathcad с помощью встроенных функций: Given, Maximize, Minimize, а в MS EXCEL с помощью надстройки поиск решения.

Рисунок 6 – Mathcad-документ решения ЗЛП Рисунок 7 – Excel-документ аналитическое решение ЗЛП Рисунок 8 Excel-документ графическое решение ЗЛП

–  –  –

() =0 Бывает несколько видов стационарных точек, которые представлены на рисунке 10.

–  –  –

Рисунок 11 – Mathcad-документ нахождение экстремумов функции одной переменной

3.2 Наибольшее и наименьшее значение функции на отрезке = ( ) принимает свой максимум и минимум, только в том Функция случае, когда она определена и непрерывна на отрезке [, ]. Считается, что на отрезке [, ] эта функция содержит конечное число критических точек. Когда максимум достигается внутри отрезка [, ], то значение подразумевается одним из максимумов функции – наибольшим максимумом. Также может быть, что минимум достигается на одном из концов отрезка. Функция на отрезке [, ] может достигать наибольшее значение на одном из концов этого отрезка или во внутренней точке этого отрезка, которая является точкой максимума. Подобное можно сказать и о наименьшем значении функции: оно достигается или на одном из концов данного отрезка, или во внутренней точке этого отрезка, которая является точкой минимума. Чтобы найти наибольшее и наименьшее значение на отрезке необходимо:

1. Найти первую производную функции ( ).

2. Найти все критические точки первого порядка ( ).

3. Установить значения функции в критических точках, принадлежащих отрезку [, ].

4. Определить значения функции на концах отрезка.

5. Из всех полученных выше значений функции подобрать наибольшее и наименьшее – они и будут представлять собой наибольшее и наименьшее значения функции на отрезке [, ].

На рисунке 12 показан способ нахождения наибольшего и наименьшего значения функции одной переменной в пакете Mathcad.

Рисунок 12 – Mathcad-документ наибольшее и наименьшее значение на заданном отрезке

3.3 Безусловный экстремум функции многих переменных

–  –  –

точки, в которых градиент функции равен нулю или не определен, называют критическими точками.

3. Достаточное условие экстремума.

Для того, чтобы произвести изучение стационарных точек на экстремум нужно проанализировать дифференциал второго порядка. Дифференциал второго порядка функции для нескольких переменных является квадратичной формой касательно приращений независящих друг от друга переменных.

4. Достаточное условие экстремума функции.

Пусть функция нескольких переменных : определена в окрестности ( ) точки a, дважды непрерывно дифференцируема в ( ) и ( ) = 0, тогда:

( ) в точке, а положительно определенная, то в Если квадратичная форма этой точке функция ( )имеет строгий локальный минимум.

( ) в точке, а отрицательно определенная, то в Если квадратичная форма этой точке функция ( )имеет строгий локальный максимум.

( ) в точке, а знакопеременная, то в этой точке Если квадратичная форма функция ( ) не имеет экстремума.

( ) определяется критерием Сильвестра или Вид квадратичной формы приведением к каноническому виду. Если функция двух переменных, то условие экстремума вместе с критерием Сильвестра приводят к элементарным правилам проверки Предположим, что функция (, ) дважды дифференцируема в окрестности (, ) и в этой же точке выполнено необходимое условие экстремума точки функции, т.е.

(, )= (, ) = 0.

–  –  –

(,) (,) (, ).

= = = При помощи этих обозначений дифференциал второго порядка функции (, ) в точке и матрица Гессе записывается следующим образом:

(, )= (, ) = +2 +,.

–  –  –

( )|

Решение таких задач делят на два этапа:

Этап первый: происходит отбор критических точек на основании необходимых условий экстремума.

Этап второй: каждая отобранная точка исследуется на экстремум.

Исследование проводиться при достаточных условиях экстремума или при помощи прямого анализа функции в пределах исследуемой точки.

На рисунке 13 представлено решение по нахождению безусловного экстремума функции двух переменных в пакете Matchad с помощью встроенных функций Given и Find.

1. Определим функцию z(x,y) и найдем производные первого порядка.

2. Найдем стационарные точки с помощью служебного слова Given.

3. Найдем частные производные второго порядка и их значение в стационарных точках и.

4. Найдем значение дискриминанта в стационарных точках.

Рисунок 13 – Mathcad-документ нахождение экстремума функции двух переменных

–  –  –

(,,…, ) = 0 (,,…, ) = 0 (3.1) ……… (,,…, ) = 0

–  –  –

(x, y) - левая часть уравнения связи, - неопределенный постоянный множитель, называемый множителем Лагранжа.

= 0, = 0, = 0.

(, ) (, ) (, )

–  –  –

= +, Продифференцировав уравнение связи (x, y) = 0 по x, получим =.

–  –  –

+ = 0. (3.2) Этому равенству удовлетворяют все точки x, y, лежащие на линии G, задаваемой уравнением связи (x, y) = 0. Умножив все члены этого равенства на неизвестный коэффициент и сложив их с соответствующими членами равенства (3.2), получим:

+ + + =0

–  –  –

+ + + =0 (3.3) Равенство (3.3) выполняется во всех точках локального экстремума, лежащих на линии G. Подберем неопределенный множитель так, чтобы для значений x и

–  –  –

образом, точки локального экстремума, лежащие на линии G, задаваемой уравнением связи (x, y) = 0, должны удовлетворять следующим условиям:

+ =0, + =0, (3.4)

–  –  –

(,, )= (, )+ (, );

2. Вычислить частные производные функции Лагранжа по переменным x, y, ;

3. Приравняв нулю найденные производные, составить систему уравнений (4); решив ее, можно определить координаты критических точек P возможного условного экстремума;

4. Определить знак приращения в окрестностях критических точек по тем точкам окрестности, которые удовлетворяют уравнению (x, y) = 0, т.е. лежат на линии L.

Если ( ) ( (, )) выполняется условие = ( ) ( ) 0,то (, ) - точка условного минимума.

Если( ) ( (, ))выполняется условие е = ( ) ( ) 0, (, ) - точка условного максимума.

На рисунке 14 показано решение по нахождению условного экстремума в пакете Matchad с помощью встроенной функции Given.

–  –  –

= (, ) определена и непрерывна в замкнутой области D.

Пусть, функция Отсюда в этой области функция достигает максимум и минимум своих значений.

Эти значения могут достигаться или в самой области D, или на ее границе. Точки максимума и минимума также называют точками абсолютного или глобального экстремума. Когда максимум или минимум находятся внутри области, их = (, ) Следовательно, называют точками локального экстремума функции функция z принимает максимум или минимум, то ее точки считаются или точками локального экстремума, или граничными точками.

Для того, чтобы найти = (, ) в замкнутой области D надо:

максимум и минимум функции

1. Вычислить значения функции в точках возможного экстремума, принадлежащих области D.

2. Найти наибольшее и наименьшее значения на ее границе.

3. Сравнить найденные значения и выбрать наибольшее и наименьшее.

Допустим, что граница области D задана уравнением (x, y) = 0. Задача нахождения наибольшего и наименьшего значений функции на границе области D сводится к отысканию наибольшего и наименьшего значений функции одной переменной, так как уравнение границы области D связывает переменные x и y между собой. Следовательно, если разрешить это уравнение относительно одной из переменных или представить его в параметрическом виде и подставить = ( ), = (, ), то придем к задаче = ( ) в уравнение выражения нахождения наибольшего и наименьшего значений функции одной переменной.

Если же уравнение (x, y) = 0 нельзя разрешить ни относительно x, ни относительно y, а также невозможно представить его параметрическими уравнениями, то задача сводится к отысканию условного экстремума[3].

ЗАКЛЮЧЕНИЕ

Предметом данной курсовой работы служат классические методы нахождения экстремума. В процессе выполнения работы обоснованы актуальность использования методов оптимизации, классических методов нахождения экстремума и специализированных математических пакетов при решении задачи линейного программирования, определены цели и задачи исследования, предмет и объект исследования. Подробно рассмотрен безусловный экстремум функции многих переменных. Для каждого метода приведен пример с подробным решением в средах математического пакета Mathcad. А так же табличный процессор Excel имеющий развитые средства, позволяющие решать разнообразные задачи оптимизации, с помощью встроенной функции: поиск решения.

СПИСОК ИСПОЛЬЗОВАНОЙ ЛИТЕРАТУРЫ

1. Аверьянова С.Ю., Растеряев Н.В. Содержательные задачи линейного программирования и их решение с помощью ЭТ MS EXCEL и пакета MATHCAD:

учебное пособие/ Южный федеральный университет. – Ростов-на-Дону:

Издательство ЮФУ, 2014. – 132 с.

2. Растеряев, Н.В., Герасименко Ю.Я. Решение оптимизационных задач в среде MATHCAD и EXCEL: Учеб. пособие – Новочеркасск: Южно-российский гос. тех. ун-т (НПИ), 2004.- 100 с.

3. Шадрина, Н.И. Решение задач оптимизации в Microsoft Excel 2010 : учеб.

пособие / Н.И. Шадрина, Н.Д. Берман. – Хабаровск : Издательство Тихоокеан. гос.

университета, 2016. – 101 с.

4. Пантелеев, А.В. Методы оптимизации в примерах и задачах: Учеб.

пособие/ А.В. Пантелеев, Т.А. Летова. – 2-е изд., исправл. – М.: Высш. шк., 2005.

– 544 с.

5. Семенкин, Е.С. Методы оптимизации: Учеб. пособие по циклу практических знаний. Красноярск 2007. – 105 с.

6. Кочегурова, Е.А. Теория и методы оптимизации / Е.А. Кочегурова;

Томский политехнический университет. – Томск: Изд-во Томского политехнического университета, 2012. – 157 с.

7. [Электронный ресурс] – Режим доступа: – 2011. – Режим доступа:

http://www.optimiz.ru/catalog/poisk, свободный.

8. Аббасов, М.Э. Методы оптимизации: Учеб. пособие / Аббасов М.Э. – СПб.: Издательство «ВВМ», 2014. – 64 с.

9. Бирюков, Р.С., Городецкий С.Ю., Григорьева С.А. Методы оптимизации в примерах и задачах : Учебно - методическое пособие. – Нижний Новгород:

Нижегородский госуниверситет, 2010. – 101 с.

10. Габасов Р., Кириллова Ф. Качественная теория оптимальных процессов.

М.: Наука, 1971. - 508 с.

11. [Электронный ресурс] – Режим доступа: 2011. – Режим доступа:

http://www.alest.info/catalog/f1/, свободный.



Похожие работы:

«Утвержден К5-135.00.00.000 ТУ-ЛУ ОКП 37 91 ПНЕВМАТИЧЕСКИЕ ПРИВОДЫ СО СТРУЙНЫМ ДВИГАТЕЛЕМ ПСДС-3 Технические условия ТУ 3791-004-07503715-99 (К5-135.00.00.000 ТУ) К5-135.00.00.000 ТУ Содержание Вводная часть...»

«РАЗРАБОТКА ТЕХНОЛОГИИ ИЗГОТОВЛЕНИЯ ДВЕРЕЙ ВЕСОПОВЕРОЧНОГО ВАГОНА Царёв А.Н. – студент, Аллилуев А.Ю. – студент, Шевцов Ю.О. к.т.н., проф. Алтайский государственный технический университет (г. Барнаул) Вагоностроение является одной из ведущих отраслей промышленности. Это связано с выпуском большого количеств...»

«УДК 628.32+ 621.384.4+ 519.673 НОВИКОВ Дмитрий Олегович РАЗРАБОТКА МЕТОДОВ И УСТРОЙСТВ ОКИСЛИТЕЛЬНОГО РАЗЛОЖЕНИЯ СЛОЖНЫХ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ ПОД ВОЗДЕЙСТВИЕМ ВЫСОКОИНТЕНСИВНОГО ИМПУЛЬСНОГО ИЗЛУЧЕНИЯ СПЛОШНОГО СПЕКТРА 01.04.01 Приборы и методы экспериментальной физики АВТОРЕФЕРА...»

«А.Н. Голубинский, А.А. Гущина доктор технических наук МАТЕМАТИЧЕСКАЯ МОДЕЛЬ ИМПУЛЬСНОГО ИСТОЧНИКА РЕЧЕВОГО СИГНАЛА, ОСНОВАННАЯ НА ПОЛИГАУССОВСКОЙ МОДЕЛИ MATHEMATICAL MODEL OF A PULSED SOURCE OF SPEE...»

«БЕГОВАЯ ДОРОЖКА DISCOVERY MOTION 5000 PLUS СОДЕРЖАНИЕ ИНСТРУКЦИЯ ПО ТЕХНИКЕ БЕЗОПАСНОСТИ 2-7 Важная информация по электричеству, инструкции по заземлению, как часто делать упражнения,...»

«ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Московский государственный технический университет "МАМИ" Кафедра "Стандартизация, метрология и сертификация" А.Н. Толстов Е. С. Блинкова ПОТВЕРЖДЕНИЕ СООТВЕТСТВИЯ (ОСНОВЫ СЕРТИФИКАЦИИ) Методическое пособие Для проведения практических занятий по курсу "Метроло...»

«КАТАЛОГ СРЕДСТВ ОГНЕЗАЩИТЫ СТАЛЬНЫХ КОНСТРУКЦИЙ 2015 КАТАЛОГ СРЕДСТВ ОГНЕЗАЩИТЫ СТАЛЬНЫХ КОНСТРУКЦИЙ 2015 УДК 624.014.2:614.84(083.82) УЦСС-008-15 ББК 38.34я8+38.96я8 В22 КАТАЛОГ СРЕДСТВ ОГНЕЗАЩИТЫ СТАЛЬНЫХ КОНСТРУКЦИЙ 2015 Украин...»

«Министерство труда, занятости и трудовых ресурсов Новосибирской области Государственное бюджетное профессиональное образовательное учреждение Новосибирской области "Бердский политехнический колледж" (ГБПОУ НСО "Бердский пол...»








 
2017 www.lib.knigi-x.ru - «Бесплатная электронная библиотека - электронные матриалы»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.